

AXIe-2: Base Software Specification

Revision 2.2
Including provisional changes for revision 2 of AXIe-1

September 13, 2018

AXIe-2: Base Software Specification

www.axiestandard.org 2 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

Important Information

Notice

AXIe-2: Base Software Specification is authored by the AXIe Consortium companies. For a vendor membership

roster list, please contact execdir@axiestandard.org.

The AXIe Consortium wants to receive your comments on this specification. To provide such feedback, or to join

the consortium, contact execdir@axiestandard.org.

Warranty

The AXIe Consortium and its member companies make no warranty of any kind with regard to this material,

including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Its

member companies shall not be liable for errors contained herein or for incidental or consequential damages in

connection with the furnishing, performance, or use of this material.

Trademarks

PICMG, CompactPCI, and AdvancedTCA® are registered trademarks of the PCI Industrial Computers

Manufacturers Group.

PCI-SIG, PCI Express, and PCIe are registered trademarks of PCI-SIG.

LXI is a trademark of the LXI Consortium Inc.

PXI is a trademark of the PXI Systems Alliance.

IVI is a trademark of the IVI Consortium

VXIplug&play is a trademark of the IVI Consortium

VISA is a trademark of the IVI Consortium

Other product and company names listed are trademarks or trade names of their respective companies.

No investigation has been made of common-law trademark rights in any work.

mailto:execdir@axiestandard.org
mailto:execdir@axiestandard.org

AXIe-2: Base Software Specification

www.axiestandard.org 3 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

Revision History .. 5

1 Introduction .. 7
1.1 AXIe Compliance ... 7

1.2 Overview of the AXIe-2: Base Software Specification .. 7

1.3 Objectives ... 7

1.4 Audience ... 7

1.5 References... 7

1.6 Definitions of Terms and Acronyms ... 8

1.7 Organization ... 9

1.8 Provisional Changes for Provisional Revision P2.0 of AXIe-2 .. 10

1.9 Extensions to the AXIe-2: Base Software Specification ... 10

1.10 Use of the PXI Software Specifications .. 10

1.11 Use of the LXI Software Specification ... 10

1.12 Use of AdvancedTCA® Software Specifications .. 11

1.13 VISA Specification ... 11

2 AXIe Software Architecture Overview .. 12
2.1 AXIe System Software Components .. 13

3 Multi-Slot, Multi-Link and Multi-Endpoint Modules 14
3.1 Multi-Slot Modules ... 14

3.2 Multi-Endpoint Modules ... 14

3.3 Multi-Link Modules .. 15

4 Linux Support .. 16

5 AXIe Module Software Requirements ... 17
5.1 PXI Compliance Requirements for AXIe Components .. 17

5.2 AXIe Slot Numbers, Physical Addresses, and Logical Addresses ... 21

AXIe-2: Base Software Specification

www.axiestandard.org 4 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

5.2.1 Slot Number of the AXIe System Module... 22
5.3 Representing AXIe Triggers ... 22

5.4 System Module Software Requirements ... 24

5.4.1 Addressing the System Module and Chassis ... 24
5.4.2 Reporting Link Information ... 24
5.4.3 Reporting the Compact PCI EEPROM .. 25
5.4.4 Behavior of the SMBusOperation Function .. 26

5.5 Chassis Software Requirements .. 26

5.5.1 An Example Chassis Description File ... 26
5.6 Peripheral Module Requirements ... 27

6 Additional AXIe Software Requirements 28
6.1 Instrument Driver Requirement .. 28

6.2 Additional AXIe Software Requirements ... 28

6.2.1 GetVersion ... 28
6.2.2 GetLUNCount ... 29
6.2.3 GetComponentCount ... 29
6.2.4 GetFieldCount ... 30
6.2.5 GetFieldInfo .. 30
6.2.6 GetLinkOrigins .. 31
6.2.7 GetLinkWidths .. 32
6.2.8 Data types .. 33

A. Summary of the PXI Software Architecture 34
A.1 Overview of PXI System Enumeration .. 35

A.2 System enumeration by the Resource Manager .. 35

A.3 The PXI Services Tree .. 36

A.4 The PXI System Module driver .. 36

A.5 The PXI Express Peripheral Module driver. ... 39

A.6 Implementation of the Peripheral Module Driver ... 41

 Peripheral Module Driver Behavior for Multi-Slot Modules ... 41

 Peripheral Module Driver Algorithm for Multi-Endpoint Modules ... 41

 Peripheral Module Driver Algorithm for Multi-Link Modules .. 42

A.7 The Chassis Description File .. 42

A.8 Details of the PXI Chassis driver ... 43

A.9 Peripheral Module Description Files .. 43

A.10 VISA PXI Plug-in Specification ... 43

AXIe-2: Base Software Specification

www.axiestandard.org 5 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

 Revision History

This section is an overview of the revision history of the AXIe-2.0 software specification.

Table 1-1. Software Specification Revisions

Revision Number Date of Revision Revision Notes

1.0 November 21, 2011 Initial revision of the spec

1.0 January 6, 2012 Clarified how the system module should respond to

mimic a Compact PCI system module.

2.0 March, 2016 Various changes:

• Updates to reflect that slot 2 is no longer a

hub slot.

• Updates to reflect 4 4-lane links to each

peripheral slot

• Deleted FRUIndex in GetFieldCount in

section 4.2.4(6.2.4 per 2.2 changes)

• Clarified Rule 3.1 to specify requirements

with respect to AXIe 1.0 Rev 3.

• Updated references to the AXIe

specifications to the new format. E.g.,

AXIe-1 instead of AXIe 1.0.

• Updated 1.9 and 1.12 to reflect updates to

IVI and PXI standards.

Provisional Changes:

• Added rule 3.13 in section 3.4.3 regarding

how to report system slot link width.(5.13

per 2.2 changes)

• Modified Rule 4.2 in section 4.2 to require

AXIe extensions intead of them being

optional. (6.2 per 2.2 changes)

• Provisional additions in 4.2.6 and 4.2.7 to

support reporting AXIe 1.0 Rev 3 fabric

information(6.2.6 and 6.2.7 per 2.2

changes)

2.1 January 11, 2018 Added section 1.1 to clarify compliance requirements,

and clarified revision as 2.1, which includes

provisional changes.

2.2 August 1, 2018 Updates to align with reent PXI revisions. These add:

• Support for Linux operating systems

• Support for modules that occupy multiple

slots

AXIe-2: Base Software Specification

www.axiestandard.org 6 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

Table 1-1. Software Specification Revisions

• Support for modules that have multiple

endpoints in the same or different slots.

• Updated section 1.8 to permit devices to

cite compliance to this version of the spec

and permitting additional compliance

statements if they also implement the

provisional changes.

AXIe-2: Base Software Specification

www.axiestandard.org 7 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

1 Introduction

1.1 AXIe Compliance

This specification is for use with other AXIe specifications. The AXIe consortium places limitations on the use of

the AXIe trademark and requires compliance with certain companion standards. Detailed compliance requirements

and trademark usage requirements are in the AXIe Compliance Requirements and Trademark Usage document.

1.2 Overview of the AXIe-2: Base Software Specification

AXIe-2 defines software specifications that support the AXIe 1.0 Base Architecture. Both architectures define an

extensible platform for general purpose, modular instrumentation. The architecture incorporates the best features

of earlier modular open instrumentation platforms, including VXI, PXI, and LXI. Like VXI and PXI, the

architecture is based on a popular modular computing platform with added features important to developers and

users of test and measurement systems.

The base platform is AdvancedTCA®, an open architecture for modular computing components targeted for

communications infrastructure applications. The AdvancedTCA® architecture includes provisions for power

distribution, power and system management, Ethernet communication between modules, and PCI Express

communication between modules, along with other capabilities.

The AXIe 1.0 Base Architecture includes some modifications to the AdvancedTCA® architecture. These

modifications provide timing, triggering, and module-to-module data movement features that are important to the

implementation of high-performance test and measurement systems. These modifications are designed to allow

most AdvancedTCA® computing modules to work within an AXIe 1.0 environment, to allow many general-

purpose AXIe devices to work in AdvancedTCA® environments, and to prevent any damaging incompatibilities

between AXIe and AdvancedTCA® devices and system components.

1.3 Objectives

The AXIe-2 Base Software Specification specifies the software necessary to support AXIe chassis, system

modules, and instrument modules that comply with AXIe-1 Base Hardware Architecture Specification.

The AXIe-2: Base Software Specification builds on the PXI software specifications in much the same way that the

AXIe-1: Base Hardware Specification builds on the AdvancedTCA® specifications. Specifically, AXIe software is

required to substantially comply with PXI-2, the PXI Software Specification and PXI-6, the PXI Express Software

Specification. This permits AXIe system software to be supported by existing PXI utilities; it also facilitates

integrating systems composed of both PXI and AXIe components.

1.4 Audience

This specification is intended to be used by:

• Product developers interested in implementing and utilizing software features of the AXIe platform.

• Hardware designers interested in referencing description files that identify and describe AXIe hardware

capabilities.

• Software designers interested in utilizing descriptors for managing AXIe resources, such as AXIe triggers,

local busses, and geographic parameters for slot and chassis identification.

1.5 References

Several other documents and specification are related to this specification. These other related documents are the

following:

VPP-4.3 Defines the semantics of the VISA library (see www.ivifoundation.org)

http://www.ivifoundation.org/

AXIe-2: Base Software Specification

www.axiestandard.org 8 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

VPP-4.3.2 VISA Implementation Specification for Textual Languages (see: www.ivifoundation.org)

IVI-6.3 VISA PXI Plug-in Specification (see: www.ivifoundation.org)

PXI-2 PXI Software Specification (see: www.pxisa.org). References to PXI-2 in this document are to

PXI-2 Revision 2.5, May 31, 2018.

PXI-4 PXI Module Description File Specification (see: www.pxisa.org). References to PXI-4 in this

document are to PXI-4 Revision 1.2, May 31, 2018

PXI-6 PXI Express Software Specification (see: www.pxisa.org). References to PXI-6 in this

document are to PXI-6 Revision 1.3, May 31, 2018.

PXI-8 PXI MultiComputing Software Specification (see: www.pxisa.org). References to PXI-8 in this

document are to PXI-8 Revision 1.1, May 31, 2018.

CompactPCI PICMG 2.0 Specification

1.6 Definitions of Terms and Acronyms

This section defines terms and acronyms used in this specification:

PXI This term originates from PXISA.org and refers broadly to the PXI specifications and compliant

components; this includes both PXI Express and PXI-1.

PXI-1 This term originates from PXISA.org and refers specifically to PXI modules that are based on

parallel PCI and not PCI Express.

System A system is a collection of one or more chassis. Each chassis may be an AXIe chassis or a PXI

chassis.

Chassis A chassis is a unit that contains a backplane, a system module, instrument modules, and a shelf

manager.

Instrument Module This is a card that plugs into an instrument slot within an AXIe chassis. In

AdvancedTCA®, these cards are loosely referred to as “blades”.

Peripheral Module This term is synonymous with Instrument Module. It is commonly used in PXI and

Compact PCI. This term is generally used in this document to be consistent with the referenced

PXI specifications.

System Module The system module provides the communication interface, both network and PCIe, outside

the chassis. The system module also distributes these communication fabrics among the

modules.

Shelf Manager The Shelf Manager Module, also referred to as the ShMM, interacts with modules in the

chassis as well as other Field Replaceable Units (FRU), such as power supplies and fans. The

shelf manager maintains an inventory of these units and is responsible for powering and

monitoring of modules over an independent IPMB backplane bus. Much more information may

be found in PICMG 3.0.

System Module Driver The driver defined by PXI-6 that enumerates system modules and the chassis they

connect to and provides API access to the chassis and system modules.

Chassis Driver The driver defined by PXI-6 that returns information about the chassis. In AXIe and PXI

Express chassis information is primarily provided by the system module driver, however AXIe-

2 defines additional APIs that provide FRU information.

http://www.ivifoundation.org/
http://www.ivifoundation.org/
http://www.pxisa.org/
http://www.pxisa.org/
http://www.pxisa.org/
http://www.pxisa.org/

AXIe-2: Base Software Specification

www.axiestandard.org 9 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

Peripheral Module Driver The driver defined by PXI-6 that returns information about its supported

peripheral modules.

IPMC Intelligent Platform Management Controller. The microcontroller that provides a IPMB

connection to the ShMC. Although required, on an instrument module, an IPMC may reside in

the chassis and provide other services such as power supply monitoring.

ShMC Shelf Manager Controller. The microcontroller that resides on the shelf and is the master of the

IPMB.

FRU Field replaceable unit. This term refers to a set of functionality on an AXIe module. This is a

historical term and the referenced functionality may not actually be a replaceable unit.

1.7 Organization

This specification was created and is maintained under the rules of the AXIe consortium.

This specification consists of a system of numbered RULES, RECOMMENDATIONS, PERMISSIONS, and

OBSERVATIONS, along with supporting text, tables, and figures.

RULEs outline the requirements of the specification. They are characterized by the keyword “SHALL”.

Conformance to these rules provides the necessary level of compatibility to support the multi-vendor

interoperability expected by system integrators and end users in the test and measurement industry. Products that

conform to this specification must meet all of the requirements spelled out in the various rules.

RECOMMENDATIONs provide additional guidance that will help AXIe equipment manufacturers improve their

users’ experiences with AXIe systems. They are characterized by the keyword “SHOULD”. Following the

recommendations should improve the functionality, flexibility, interoperability, and/or usability of AXIe products.

Products are not required to implement the recommendations.

PERMISSIONs explicitly highlight some of the flexibility of the AXIe specification. They are characterized by

the keyword “MAY”. The permissions generally clarify the range of design choices that are available to product

and system designers at their discretion. They allow designers to trade off functionality, cost, and other factors in

order to produce products that meet their users’ expectations. Permissions are neutral and imply no preference as to

their implementation.

OBSERVATIONs explicitly highlight some of the important nuances of the specification. They help the readers

to fully understand some of the implications of the specification’s requirements and/or the rationale behind

particular requirements. They generally provide valuable design guidance.

All rules, recommendations, permissions, and observations must be considered in the context of the surrounding

text, tables, and figures. Rules may explicitly or implicitly incorporate information from the text, tables, and

figures. Although the authors of this specification have gone to significant effort to insure that all of the necessary

requirements are spelled out in the rules, it is possible that some important requirements appear only in the

specification’s free text. Conservative design practice dictates that such embedded requirements be treated as rules.

The AXIe-2 specification is based on several PXISA®
 specifications and AXIe 1.0 hardware specifications.

Relevant PXISA®
 numbered requirements are explicitly referenced in this specification’s rules, recommendations,

permissions, and observations. These requirements are incorporated along with their supporting context (text,

tables, figures, etc.). Any numbered requirement that is not explicitly included by this specification’s rules,

recommendations, permissions, or observations, is excluded from the AXIe-2 requirements.

Successful implementation of AXIe products and systems requires in-depth knowledge of the AXIe 1.0 Base

Architecture Specification and PXISA®
 specifications.

AXIe-2: Base Software Specification

www.axiestandard.org 10 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

1.8 Provisional Changes for Provisional Revision P2.0 of AXIe-2

The initial release of revision 2.0 of this specification was passed provisionally. That is, the AXIe consortium

believes the changes made for revision 2.0 to be accurate and complete further the consortium expects them to be

required for compliance with the specification. However, subject to implementation and interoperation testing, the

changes and additions to the specification may need to be revisited. Once suitably verified, the changes will be

either confirmed or, if necessary, extension and corrections consistent with the direction established by the

provisional changes may be added.

The provisional changes are:

• Added Rule 5.14 in section 5.4.3 regarding how to report system slot link width.

• Modified Rule 6.2 in section 6.2 to require AXIe extensions intead of them being optional.

• Provisional additions in 6.2.6 and 6.2.7 to support reporting AXIe 1.0 Rev 3 fabric information

Any implementation the complies with all of the non-provisional rules is permitted to cite compliance to AXIe-2,

Revision 2.2. Implementations that further comply with the provisional rules listed above are permitted to cite

compliance to “AXIe-2 Revision 2.2, provisional changes”.

1.9 Extensions to the AXIe-2: Base Software Specification

The AXIe modular architecture is intended to be an extensible architecture. An extension may focus on a specific

niche market requirement that is not considered advantageous to be a part of the base specification. In contrast the

base specification describes attributes and features that are advantageous to be common across all extensions. Such

commonality is beneficial across the AXIe community.

An example of a hardware extension might be a specific market application using the Zone 3 interface. Such an

extension likely has software features targeted for using that hardware extension. These hardware and software

extensions would be described in separate hardware and software specifications specific to the extension. Such

extensions must be adopted and approved by the AXIe Consortium Committee.

1.10 Use of the PXI Software Specifications

This specification leverages from well known and understood standards such as the PXI specifications. Where

possible, the AXIe standard directly uses the PXI software specification. This simplifies implementation, system

integration, promotes adoption, and encourages reuse.

In addition, AXIe contains elements that do not exist in PXI but must be supported by the base software. The

requirements in this specification regarding those elements do not conflict with any PXI requirements.

No provisions in this specification conflict with, or alter the PXI requirements.

The PXISA has defined a mechanism for software clients to reserve backplane trigger lines. AXIe chassis are

encouraged to comply with PXI-9 in order for clients to reserve AXIe trigger lines (note that routing is not

meaningful for AXIe chassis).

The PXI-8, PXI MultiComputing Software Specification defines shared memory and other standard protocols to

allow CPU based device to communicate through non-transparent bridges. Compliance with PXI-8 is optional for

AXIe equipment.

1.11 Use of the LXI Software Specification

The AXIe software specification recommends that AXIe network modules comply with LXI where practical.

Further details of software requirements for the network connection on modules may be incorporated in a latter

version of this standard.

AXIe-2: Base Software Specification

www.axiestandard.org 11 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

The shelf manager in an AXIe system has a network interface. In AdvancedTCA® systems, the shelf manager is

statically configured to a fixed IP address during configuration. AXIe systems are more dynamic in that they may

be set up, configured, modified, and moved to suit a particular test configuration. The network fabric in these

cases may be part of a DHCP served environment in which IP addresses are subject to change. Chassis and system

designers should create their shelf managers to be friendly entities on the network and attain IP addresses using

DHCP or Dynamically Configured Link Local Addressing1.

1.12 Use of AdvancedTCA® Software Specifications

AdvancedTCA® provides a rich feature set of hardware and software functionality. The AXIe 1.0 Base

Architecture Specification, Chapter 3, Hardware Platform Management, summarizes important attributes of

AdvancedTCA® and how these relate to an AXIe system context. This chapter references several other

specifications that describe e-keying functionality, FRU records, the Intelligent Platform Management Interface

(IPMI 1.5), and Remote Management Control Protocol (RMCP). These standards permit a common set of

software tools to interact with shelf and board management features. There are vendors today that already

specialize in promoting shelf managers and board management controllers adhering to these AdvancedTCA®

recommendations.

1.13 VISA Specification

The IVI Foundation defines a family of VXIplug&play specifications that include the VISA specifications which

define a standard IO library. The basic capabilities of the library are defined in the VPP-4.3 specification, The

VISA Library. VPP-4.3.2, VISA Implementation Specification for Textual Languages, defines how the library is

implemented for textual languages.

The IVI suite of VISA standards includes IVI-6.3, IVI VISA PXI Plug-in which defines a stand-alone VISA plug-in

which may be called by VISA to perform PXI IO for a specific device. Although beyond the scope of this

specification, this is a useful mechanism for doing IO to AXIe devices that comply with this specification.

This is especially useful since PXI-2 section 3.6 requires that all system controllers shall provide a VISA

implementation that supports the PXI bus and complies with the VISA library specifications, version 4.0 or higher.

By using the VISA Plug-In, vendors need not provide a full VISA library.

Information regarding the VISA standards is available from the IVI Foundation.

1 Per RFC 3927, Dynamic Configuration of Ipv4 Link-Local Addresses

AXIe-2: Base Software Specification

www.axiestandard.org 12 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

2 AXIe Software Architecture Overview

An AXIe system’s heritage is based upon AdvancedTCA®, PICMG 3.0, and PXI. The AXIe architecture adds

several extensions beyond the scope of telecommunication applications into test and measurement applications.

AXIe provides both network and PCIe interconnect fabrics. Additionally, there are dedicated clocks,

synchronization, and triggering signals specifically added for instrumentation. For more details on the hardware

architecture, refer to the AXIe 1.0 Base Architecture Specification.

The key components of the system are shown in Figure 1, Hardware Components of an AXIe System. Note that:

• There is a single host computer in the system, called the system controller. Multiple system modules may

be connected to the system controller. Although the host computer may be embedded in the AXIe

chassis, the software architecture remains the same.

• The system module (SM) is the hardware that provides the connectivity to the chassis. The system

module must occupy the system slot in an AXIe chassis, and provide connectivity to the system

controller. There is one system module per chassis.

• AXIe-2 uses the physical slot number to reference slots. Throughout this document, any reference to slots

refers to the physical slot unless further qualified. The physical slot is the slot designation that is visible

to a user looking at the front of the chassis, and are labelled from left to right or bottom to top per ATCA

specifications. Although individual modules and their software may not know the physical address, the

chassis can provide that information using ATCA specified protocols.

The physical slot is available to AXIe modules by interrogating the ShMC which maintains a site number

lookup list which can be interrogated using standard ATCA netFN (net function) commands over IPMB.

• Each chassis contains a number of slots, including one system slot, an instrument hub slot, and instrument

slots (also known as peripheral slots). The system slot is always logical address 1, but not necessarily

physical slot 1. Furthermore, a chassis vendor may choose to integrate system module functionality into a

chassis. In this case, the system module is referred to as an embedded system module and the physical slot

. . .

System

Controller

System

Module #1

Chassis #1

Slot3

Slot n

Slot4

Shelf Mgr

Additional Chassis

Slot 2

Slot 1 (System Slot)

Shelf Mgr 2

Figure 1 Hardware Components of an AXIe System

AXIe-2: Base Software Specification

www.axiestandard.org 13 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

number reported shall be 0. A chassis that has an embedded system module is referred to as an integrated

chassis.

• The shelf manager is associated with an individual chassis. Although not required as part of AXIe, there

may be a redundant shelf manager for the purpose of high availability systems. This backup shelf

manager transparently assumes the role of the primary shelf manager in the event of failure.

The AXIe hardware specification permits combining system controllers, system modules, chassis, and instrument

modules from different vendors. The basic purpose of the AXIe-2 Base Software Specification is to provide the

minimum software infrastructure to permit system providers to assemble systems from different components

without tying the software to a specific vendor’s implementation.

2.1 AXIe System Software Components

PXI

System Module

Driver

PXI Resource

Manager

PXIESYS.INI

PXI

Peripheral

Module Driver Chassis

Description

File

REGISTRY

PXI Services

Tree

INF

File
Kernel Driver

Module

Description

File

Figure 2 Basic AXIe system discovery showing the PXI modules used.

Figure 2 shows the PXI components that are involved in the discovery and enumeration of an AXIe system. The

requirements regarding this software are the purview of the PXI specifications. An overview of their operation and

how they work with AXIe is in Appendix A.

Details of this enumeration process are specified PXI-2 and PXI-6.

PXI-4 describes an optional module description file. This file contains information about the specific module. The

resource manager may incorporate this information in the system description file (that is, the PXIESYS.INI file).

In this case, The information from the module description file is embedded within the descriptor for the slot that

contains this module in the system description file. For instance, if a module foo has a module description file with

an entry bar = “baz”. For each slot that contains the foo module, the PXIESYS.INI file will include the descriptor

line bar=”baz”.

The module description file is optional for both PXI and AXIe devices.

The INF File shown in the illustration is provided along with the module kernel driver in order for the Windows

operating system to correctly identify and install the kernel driver. Linux installations do not have this mechanism.

See Appendix A, Summary of the PXI Software Architecture, for additional detail on the PXI software

architecture.

AXIe-2: Base Software Specification

www.axiestandard.org 14 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

3 Multi-Slot, Multi-Link and Multi-Endpoint Modules

Figure 3 Examples of Multi-Slot, Multi-Link and Multi-Endpoint Modules

This topic describes the discovery mechanisms specified by PXI for:

• Modules that occupy multiple slots

• Modules that place multiple endpoints in a single slot

3.1 Multi-Slot Modules

Multi-Slot Modules occupy more than one slot. In Figure 3, C, D and E are Multi-Slot Modules. Effective with

the PXI standard updates in 2018, the peripheral module driver supports calls that return:

• Slot Number – Slot number where the link is currently connected

• Occupied slot count – Number of slots occupied by this device

• Slot number offset – Number of chassis slots the module occupies that are to the left of the slot reported.

For example, zero indicates that the occupied slot is the leftmost slot, and the module extends to the right

by the occupied slot count minus 1.

3.2 Multi-Endpoint Modules

In Figure 3, B is an example of a multi-endpoint module. It contains a switch and two endpoints. Note that the

operating system instantiates a kernel driver for each endpoint and each represents a PCI Express link. (Note, in

PCI, the term link refers to a PCI connection between two devices).

PXI specifies that the API used to query links only report a single link for this slot, even though there are PCI

Express links to both bus 9 and bus 10. PXI recommends that the connection to the backplane (from the switch) be

reported from the module, but this is frequently not practical because there is not a generic way to determine the

path to the switch on some operating systems. Therefore, peripheral module drivers are permitted to onlyreport the

links to the endpoints.

To report two endpoints, the peripheral module driver returns the address of both endpoints in the address_info

query as a semicolon separated string:

• For a single endpoint device, the address_info returns a VISA bus, device, function address string. For

example: "PXI0::9-0.0::INSTR" (not including the quotes)

AXIe-2: Base Software Specification

www.axiestandard.org 15 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

• For a multiple endpoint module, the peripheral module driver returns the VISA address for each endpoint,

separated by commas. For example: "PXI0::9-0.0::INSTR;PXI0::10-0.0::INSTR" (not including the

quotes) indicates two endpoints with bus addresses 9 and 10.

For instance, the first identified end-point address may be the main FPGA, the second endpoint could be for in-

bound streaming, and the third for out-bound streaming. Thus, the instrument driver can access this string to

determine how the module was enumerated.

The PXI standard does not specify the significance of the order of the addresses in the address_info string.

However, the IVI VISA standard specifies that VISA sessions can be opened to each endpoint by specifying the

index of the endpoint in the string.This is important because neither the PCI specification nor the operating system

guarantee the order in which the PCI bus numbers are assigned for each endpoint on the module.

This same technique is used when a multi-endpoint module within a multi-slot module is reported.

3.3 Multi-Link Modules

The PXI Express standard refers to modules that occupy multiple slots where endpoints are connected to the

backplane from more than one slot as multi-link modules. This is somewhat of a misnomer in that a multi-endpoint

module also has multiple PCI links. These links all appear to be part of a single multi-slot module to the end user.

In Figure 3, D and E are Multi-Link Modules.

For these modules, PXI specifies that a peripheral module driver reports the presence of a link in each slot that

contains a link to the backplane. Therefore, the module reports both links, each describing the location and full

width of the module and the offset of this link within the module. Thus, it is apparent to the resource manager that

the module is three slots wide, and that there are links to the first and third slots because the installed peripheral

module drivers report overlapping geographical locations for the modules.

AXIe-2: Base Software Specification

www.axiestandard.org 16 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

4 Linux Support

PXI specifies Linux and Windows frameworks for both 32 and 64-bit operating systems. The architecture of the

two is substantially the same, and thus the operating system has very little impact on the standard itself. The most

notable difference is that the registration and configuration information on Windows is stored in the Windows 32-

bit registry. On Linux, configuration information is stored in the file system.

AXIe-2 permits AXIe components to support any of the PXI-defined frameworks, including Linux, Windows, or

both. Products should provide clear documentation of the supported framework.

In the case of Windows, the Windows registry provides a hierarchical organization for the installation data, and all

installation data is stored in the 32-bit registry in a registry hive specified by the PXI standards alliance. Since

Linux does not have an intrinsic data storage mechanism the configuration information is stored in a specified

location on the Linux file system in INI files. The Linux file system hierarchy replicates the registry hierarchy on

Windows.

PXI-2 specifies the location where the registration data is placed on the file system, and how the INI files are

formatted and organized within the file system to provide the registration information required by PXI and AXIe.

The PXI-2 specification also specifies the details of the group and user ownership of the created files.

INI files themselves do not have a tightly specified syntax, therefore the PXI standard specifies the syntax used in

the INI files. This is a simple and conventional INI format and is the same format that is used for other INI files

used in both the Windows and Linux frameworks. For instance the PXIESYS.INI file and the chassis INI file use

the same syntax.

RULE 4.1: AXIe devices that support Linux shall comply with one or both of the Linux frameworks as

specified by PXI in PXI-2 and PXI-6

RULE 4.2: AXIe devices that support Windows shall comply with one or both of the Windows frameworks as

specified by PXI in PXI-2 and PXI-6.

AXIe-2: Base Software Specification

www.axiestandard.org 17 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

5 AXIe Module Software Requirements

In order to facilitate the development and deployment of AXIe systems alongside PXI systems, the AXIe software

requirements are based on the PXI software requirements.

RULE 5.1: AXIe chassis providers, system module providers, and instrument module providers are required to

provide software components as required by the PXI standards for PXI Express devices. The

relevant PXI standards for these devices are PXI-2, PXI Software Specification, and PXI-6, The PXI

Express Software Specification.

In addition, AXIe providers are required to provide software that complies with all other rules in this

specification. AXIe hardware that complies with earlier versions of AXIe-1 than 3.0 shall comply

with AXIe-2 revision 1.0. AXIe hardware that complies with AXIe-1 version 3.0 shall comply with

AXIe-2 revision 2.0 or later.

Since there are certain intrinsic differences between PXI and AXIe, a small number of differences exist between

the AXIe deliverables and PXI deliverables. In some cases, the differences are only in the implementation, in

other cases, the PXI deliverable may not be relevant for AXIe.

Further, since AXIe provides capabilities beyond the scope of PXI, these are described separately in a way that

permits compatibly deploying AXIe and PXI, and also provides the necessary incremental information for AXIe

peripherals.

5.1 PXI Compliance Requirements for AXIe Components

RULE 5.2: AXIe System Modules, Chassis, and Peripheral modules shall comply with the corresponding

requirements in PXI-6, Revision 1.3, subject to the explanations and caveats in Table 2, Details of

how PXI-6 bears on AXIe components.

Note that PXI requires that the system controller provide a resource manager. Table 2, Details of how PXI-6 bears

on AXIe components includes a column highlighting the PXI requirements for the resource manager. A PXI

compliant resource manager will correctly enumerate an AXIe system and create a correct PXIESYS.INI file that

includes the AXIe system.

In Table 2, Details of how PXI-6 bears on AXIe components:

Req Indicates that this requirement shall be satisfied by the module in the corresponding column

NA Indicates that this requirement is not applicable to the module in the corresponding column

<other> Other text in this field indicates the required behavior for the module in the corresponding

column

Table 2 Details of how PXI-6 bears on AXIe components

PXI-6 Section System

Controller

(Resource

Manager)

System Module Shelf/Chassis Peripheral

Module

2.1 Common File Requirements NA Req Req Req

2.1.1 Version Descriptor NA Req NA NA

AXIe-2: Base Software Specification

www.axiestandard.org 18 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

PXI-6 Section System

Controller

(Resource

Manager)

System Module Shelf/Chassis Peripheral

Module

2.2.1 System Description

Definitions

Req NA NA NA

2.2.2 Resource Manager

Descriptor

Req NA NA NA

2.2.3 System Descriptor Req NA NA NA

2.2.4 Chassis Descriptor Req NA NA NA

2.2.5 Trigger Bus Descriptor Req NA NA NA

2.2.6 Trigger Bridge Descriptor Req NA NA NA

2.2.7 Line Mapping Specification

Descriptor

Reg NA NA NA

2.2.8 Star System Timing Sets

Descriptor

Req

NA NA NA

2.2.9 Star Trigger Descriptor Req

NA NA NA

2.2.10.1 System Slot Descriptors Req

NA NA NA

2.2.10.2 Peripheral Slot Descriptor Req NA NA NA

2.2.11.1 Single-Chassis PXI

Express System

Req NA NA NA

2.3 Chassis Description Files NA NA Req NA

2.3.2 Chassis Descriptor NA NA Req

NA

2.3.3 Trigger Bus Descriptor NA NA Req

AXIe has a fixed

single bus

NA

AXIe-2: Base Software Specification

www.axiestandard.org 19 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

PXI-6 Section System

Controller

(Resource

Manager)

System Module Shelf/Chassis Peripheral

Module

2.3.4 Trigger Bridge Descriptor NA NA Req NA

2.3.5 Line Mapping Specification

Descriptor

NA NA Req NA

2.3.6 Star System Timing Sets

Descriptor

NA NA Required as

described in

section 5.3

NA

2.3.7 Star Trigger Descriptor NA NA Required as

described in

section 5.3

NA

2.3.8 PXI-1 Bus Segment

Descriptor

NA NA AXIe chassis

shall NOT

include a PXI-1

bus segment

descriptor unless

they have

special

provisions for

PXI-1 devices

NA

2.3.9 Slot Descriptor NA NA Req NA

3.3.1 System Module Drivers NA Req NA NA

3.3.2 Chassis Drivers NA NA Not required

since AXIe

devices are PCIe

and this

component is a

PXI-1

requirement.

NA

3.3.3 Peripheral Module Drivers NA NA NA Req

3.3.4 Status Codes NA Req Req Req

3.4 Registration of Services NA Req Req Req

3.4.1 Services Tree NA Req Req Req

3.5 System Enumeration NA Req NA NA

AXIe-2: Base Software Specification

www.axiestandard.org 20 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

PXI-6 Section System

Controller

(Resource

Manager)

System Module Shelf/Chassis Peripheral

Module

3.5.1 Resource Manager Algorithm Req NA NA NA

3.5.2 Determining Chassis

Numbers

Req NA NA NA

3.5.3 Handling Driver Errors NA Req NA NA

4.2 PXI Software Compatibility

(this section requires compliance

with PXI-2, section 3)

NA Req Req Req

4.3 32-bit Windows System Framework

4.3.2 System Description File

Location

NA Req NA NA

4.3.3 System Configuration File

Location

NA Req Req NA

4.3.4 Chassis Description File Path

Location

NA Req Req NA

4.3.5 Driver Software Bindings NA Req Req Req

4.3.6 Services Tree Implementation NA Req Req Req

4.4 64-bit Windows System Framework

4.4.2 System Description File

Location

NA Req NA NA

4.4.3 System Configuration File

Location

NA Req Req NA

4.4.4 Chassis Description File Path

Location

NA Req Req NA

4.4.5 Driver Software Bindings NA Req Req Req

4.4.6 Services Tree Implementation NA Req Req Req

4.5 32-bit Linux System Framework

AXIe-2: Base Software Specification

www.axiestandard.org 21 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

PXI-6 Section System

Controller

(Resource

Manager)

System Module Shelf/Chassis Peripheral

Module

4.5.2 System Description File

Location

NA Req NA NA

4.5.3 System Configuration File

Location

NA Req Req NA

4.5.4 Chassis Description File Path

Location

NA Req Req NA

4.5.6 Services Tree Implementation NA Req Req Req

4.5.7 Security of PXI Files and

Interfaces

NA Req Req Req

4.6 64-Bit Linux System Framework

4.6.2 System Description File

Location

NA Req NA NA

4.6.3 System Configuration File

Location

NA Req Req NA

4.6.4 Chassis Description File

Location

NA Req Req NA

4.6.5 Driver Software Bindings NA Req Req Req

4.6.6 Services Tree Implementation NA Req Req Req

4.6.7 Security of PXI Files and

Interfaces

NA Req Req Req

Appendix: 32-Bit Windows System

Framework Files2

NA Req Req Req

5.2 AXIe Slot Numbers, Physical Addresses, and Logical Addresses

All AXIe devices have multiple addresses including:

.

AXIe-2: Base Software Specification

www.axiestandard.org 22 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

Physical Address This identifies the physical location of the module within the frame. AdvancedTCA®

requires that the leftmost (or bottom) slot be 1 and increment from left to right (or bottom to

top).

Logical Address A Slot within a Shelf defined by the Zone 1 Hardware Address. Every Slot has a unique

Logical Slot number (maximum of 16 Logical Slots per Shelf). Logical Slot numbers are

used to determine Channel mapping between Slots. PICMG® 3.0 defines a direct correlation

between Channel numbers and Logical Slot numbers. For example, Channel 1 (Base and/or

Fabric Channels) of every Slot establishes a direct connection to Logical Slot 1.

Hardware Address This address is set by using 7 lines directly connected to each module. This corresponds to

the PXI geographical address. This same address is used as the IPMB address. The

hardware address and physical address in AXIe differ numerically by 0x40 (64 decimal) (per

AdvancedTCA® section 3.2.3.2).

For the purposes of this spec and relating AXIe to PXI, the slot number reported as the PXI slot number shall be

the AXIe physical address.

RULE 5.3: When an AXIe peripheral module driver reports the module’s slot number, it shall report the AXIe

physical address.

5.2.1 Slot Number of the AXIe System Module

RULE 5.4: If the system module is not an embedded system module, it shall use its physical address as the PXI

slot where the system module is located.

RULE 5.5: If the system module is an embedded system module, that is, the system module is embedded in the

chassis, then the system module shall use a PXI slot of 0.

The address of the system slot appears in the system description file. It is available to the resource manager via the

CompactPCI EPROM information.

Furthermore, since the AXIe System Slot provides timing functionality, the system slot should be reported as the

timing module slot.

System software designed for PXI, where the system module is always at slot number 1, may have to be extended

to properly support AXIe slot system module slot numbers which may be any slot, or zero in the case of an

embedded system module.

5.3 Representing AXIe Triggers

RULE 5.6: AXIe description files shall use the system slot number as the PXI timing slot.

Table 3, AXIe trigger representation in the PXI chassis description file, describes how AXIe triggers shall be

described to the PXI system software.

AXIe-2: Base Software Specification

www.axiestandard.org 23 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

Table 3 AXIe trigger representation in the PXI chassis description file

Context PXI

definition

and usage

AXIe

Trigger Bus

Descriptor

Describes

the

electrically

separate

PXI trigger

buses. Note

that external

control

handles

buffering

between

segments.

RULE 5.7: AXIe chassis TriggerBus

descriptor shall always indicate a

single non-segmented trigger bus

to each slot.

For example:

[TriggerBus1]

SlotList = 1,2,3,4,5,6,

...

Where the SlotList includes all slots in the

chassis including the system module slot.

Star System Timing

Sets Descriptor (that

is the connections of

the star triggers

defined for PXI

Express)

A single

timing set

descriptor is

included for

each timing

slot in the

chassis.

Each

indicates the

mapping of

the set of 3

PXI Express

DTAR

triggers

between

timing slot

outputs and

module

DSTAR

trigger

inputs

RULE 5.8: The AXIe chassis shall not

include a StarSystemTimingSet

descriptor since the single AXIe

star trigger is reported with a

StarTriggerDescriptor.

AXIe-2: Base Software Specification

www.axiestandard.org 24 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

Context PXI

definition

and usage

AXIe

Star Trigger

Descriptor (that is,

the connection of

the star trigger

defined by PXI-1)

For each

slot, a

description

of which

timing slot

trigger

output is

routed to

which

module slot.

Note that

the PXI-1

star trigger

is a single

bidirectional

trigger

much like

AXIe.

RULE 5.9: The AXIe chassis StarTrigger

descriptor always indicates a

single star trigger to each slot,

with the system module slot as

the SystemTimingSlot.

For example:

[StarTrigger0]

SystemTimingSlot = 0

PXI_STAR0=1

PXI_STAR1=2

...

The system timing slot point at the slot

containing the system module or zero for

embedded system modules.

5.4 System Module Software Requirements

The following sections describe software requirements regarding the system module.

5.4.1 Addressing the System Module and Chassis

RULE 5.10: The address_info value returned by the system module driver PXISA_SystemModule_GetName

function shall return a string that a client can use to open a session to either a chassis or system

module software programming interface (that is, an instrument driver) to both chassis and system

module functions.

RULE 5.11: The address_info string is constructed by concatenating the VISA address of the chassis with the

“+” character and the VISA address of the system module. In the case of an embedded system

module, if the drivers for both the system module and the shelf may be opened using the same

string, a single VISA address string may be used.

For instance, if an IVI driver is provided to control the chassis, the address_info string can be passed to the

Initialize function to open a session to this particular chassis. Similarly, the same string can be passed to the

Initialize function of the IVI driver for the system module to open a session with this system module.

For example, if the IP address of the chassis were 192.168.1.0 and the IP address of the system module were

192.168.1.1, an appropriate addressInfo response would be:

TCPIP::192.168.1.0::SOCKET+TCPIP::192.168.1.1::SOCKET

Note that the resource manager will place this string in the PXIESYS.INI file where it can be accessed by client

software. Further, spaces are not allowed in the the address_info string.

5.4.2 Reporting Link Information

PXI systems may provide either 2 or 4 links to the system controller, each of varying width. These may be directly

connected to a limited number of modules, or routed through PCI switches for more flexible connections. AXIe

AXIe-2: Base Software Specification

www.axiestandard.org 25 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

system modules have a star topology, with 1 to 4 PCI Express connection to each slot. In order to interoperate

with PXI systems and PXI system software, AXIe modules report artificial values.

The AXIe system module driver shall report 2 8-lane connections and associate at least one actual bus number and

subordinate bus number with each reported link in order to respond to the various queries issued with the

PXISA_SystemModule_GetInformation call.

RULE 5.12: The system module driver PXISA_SystemModule_GetInformation call shall indicate 2, 8-lane links.

The bus number range reported for these two links shall both be non-empty. All of the bus numbers

of the links to the instrument modules shall be associated with one and only one of the two links.

5.4.3 Reporting the Compact PCI EEPROM

RULE 5.13: System Modules that only implement AXIe-1 versions before Rev 3 shall provide a system module

driver. The PXISA_SystemModule_GetChassisEeprom shall return a data structure constructed to

mimic a Compact PCI EEPROM. Specifically, the following fields shall reflect the corresponding

AXIe chassis information:

• Vendor ID (string)

• Model (string)

• Serial Number (string)

• Slot Count (byte)

• Peripheral Slot Count (physical number of peripheral slots)

• System Slot number, that is, the physical address of the system slot (byte)

• System Slot type (AXIe shall always report a 2-Link slot type)

• System Slot Link 1 width (AXIe shall always report an 8-lane link)

• System Slot Link 2 width (AXIe shall always report an 8 to indicate an 8-lane secondary

link)

• For each slot, individual slot link connectivity

o Peripheral slot number, that is, the physical location

o Link number 1 origin (that is, the link number to the system slot)

o Link number 2 origin as “no connection”

o Slot type

o Peripheral slot link 1 width

o Peripheral slot link 2 width shall be reported as “Not routed”

RULE 5.14: <Provisional addition to AXIe-2.0 Revision 2.0> System Modules that only implement AXIe-1

versions before Rev 3 shall provide a system module driver. The

PXISA_SystemModule_GetChassisEeprom shall return a data structure constructed to mimic a

Compact PCI EEPROM. Specifically, the following fields shall reflect the corresponding AXIe

chassis information:

System Modules that support AXIe-1 Rev 3 and newer shall report:

• Vendor ID (string)

• Model (string)

• Serial Number (string)

• Slot Count (byte)

• Peripheral Slot Count (physical number of peripheral slots)

• System Slot number, that is, the physical address of the system slot (byte)

• System Slot type (AXIe shall always report a 2-Link slot type)

• System Slot Link 1 width (AXIe shall always report an 8-lane link)

• System Slot Link 2 width (AXIe shall always report an 8 to indicate an 8-lane secondary

link)

AXIe-2: Base Software Specification

www.axiestandard.org 26 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

• For each slot, individual slot link connectivity

o Peripheral slot number, that is, the physical location

o Link number 1 origin (that is, the link number to the system slot)

o Link number 2 origin (that is, the link number to the system slot)

o Slot type

o Peripheral slot link 1 width

o Peripheral slot link 2 width

Note that information regarding AXIe Links 3 and 4 are not reported via this mechanism.

Details of the format for this information are in the PICMG CompactPCI specification.

5.4.4 Behavior of the SMBusOperation Function

RULE 5.15: The system module driver PXISA_SystemModule_SMBusOperation shall not return an error

although no equivalent SMBus operation is provided to the chassis.

5.5 Chassis Software Requirements

In the PXI Architecture, a chassis driver is used to enumerate the PXI-1 buses in each chassis. Since an AXIe

chassis manifests as a pure PXI Express chassis, AXIe chassis are not required to provide a PXI chassis driver.

RULE 5.16: The chassis description file for an AXIe chassis shall indicate the slot connected by the local bus

connection to the left and right.

Note that for AXIe, this does not indicate the width of the connection.

The following example shows a valid descriptor of the adjacent slots to an AXIe slot:

[SLOT4]

LOCALBUSLEFT = "SLOT3"

LOCALBUSRIGHT = "SLOT5"

5.5.1 An Example Chassis Description File

The following example shows a valid AXIe Chassis Description File:

Example Chassis Description file.

[Chassis]

Model = "M9505a"

Vendor = "Agilent Technologies"

Slots = "1,2,3,4,5"

TriggerBusList = "1"

StarSystemTimingSetList = "1"

[TriggerBus1]

SlotList = "0,1,2,3,4,5"

[StarTrigger1]

SystemTimingSlot = 0 # ESM is part of chassis, referred to as "slot 0"

PXI_STAR0 = 1

PXI_STAR 1 = 2

PXI_STAR 2 = 3

PXI_STAR 3 = 4

PXI_STAR 4 = 5

AXIe-2: Base Software Specification

www.axiestandard.org 27 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

[Slot1]

LocalBusLeft = "None"

LocalBusRight = "Slot2"

[Slot2]

LocalBusLeft = "Slot1"

LocalBusRight = "Slot3"

[Slot3]

LocalBusLeft = "Slot2"

LocalBusRight = "Slot4"

[Slot4]

LocalBusLeft = "Slot3"

LocalBusRight = "Slot5"

[Slot5]

LocalBusLeft = "Slot4"

LocalBusRight = "None"

5.6 Peripheral Module Requirements

AXIe modules may include peripheral module description files. In which case, the resource manager will treat

them exactly as PXI peripheral module description files.

RULE 5.17: The peripheral module driver PXISA_PeripheralModule_GetInformation call shall return the actual

maximum link width supported by the module, up to the AXIe imposed maximum.

RULE 5.18: The peripheral module driver PXISA_PeripheralModule_GetInformation call shall return the

negotiated link width and PCI bus number as required by the PXI-6 specification.

RULE 5.19: The peripheral module driver PXISA_PeripheralModule_GetInformation call shall return the AXIe

logical address when the client queries for slot number.

AXIe-2: Base Software Specification

www.axiestandard.org 28 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

6 Additional AXIe Software Requirements
This section has general requirements not directly associated with other sections.

6.1 Instrument Driver Requirement

RULE 6.1: All AXIe devices that support the PXI 32 or 64-bit Windows framework shall provide an IVI

Specific Driver. The details of this requirement are called out in Section 5 of IVI-3.1.

RULE 6.2: All AXIe devices that support the PXI 32 or 64-bit Linux framework shall provide a software driver

consistent with the PXI requirements.

Devices may optionally provide additional drivers. This is especially appropriate for environments other than

Microsoft Windows.

6.2 Additional AXIe Software Requirements

RULE 6.3: < Provisional addition to AXIe-2.0 Revision 1.1 > This section defines a set of application program

interfaces (APIs) that shall be provided by AXIe system modules to access various FRU

information. These API’s are provided as additional functions of the PXI-6 defined system module

driver.

These functions provide access to the FRU component fields defined by IPMI 1.0 of the AXIe modules.

RULE 6.4: Calls to these functions are only guaranteed to work after calling the PXI system module driver

PXISA_SystemModule_GetCount function.

RULE 6.5: Any cached information associated with these functions shall be refreshed when

PXISA_SystemModule_GetCount is called.

RULE 6.6: If any of the AXIe PXI System Module Driver APIs defined in this section are implemented, all

shall be implemented.

RULE 6.7: Calling conventions, data type definitions, return value definitions, bitness, and installation shall

track the PXI-6 specifications regarding the implementation of PXI defined functions of the chassis

driver.

6.2.1 GetVersion

Get the revision number number of the AXIe standard that this API complies with. The info string permits the

system module driver to return an arbitrary vendor defined string.

tPXISA_Status AXIe_GetVersion(

 __out tPXISA_PInteger version,

 __out tPXISA_PString info

);

Parameters

version An integer specifyign the version of the AXIe spec this API complies with. For

version 1.0 of the specification, 0x00010000 shall be returned.

info An arbitrary string that may be used by the system module driver to
communicate other vendor specific information.

Return Value

This operation shall always complete successfully, the return value is kPXISA_Success.

AXIe-2: Base Software Specification

www.axiestandard.org 29 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

6.2.2 GetLUNCount

Get the number of LUNs (Logical UNits) associated with the device in the specified slot. GetComponentCount is

permitted to cache information associated with the chassis and slot to optimize GetComponentCount however it is

required to clear any cached information when it is called.

tPXISA_Status AXIe_GetLUNCount(

 __in tPXISA_Integer chassisNumber,

 __in tPXISA_Integer slotNumber,

 __out tPXISA_Pinteger LUNcount

);

Parameters

chassisNumber The chassis number containing the instrument module, as returned using the
PXI-6 PXISA_SystemModule_GetCount function.

slotNumber The slot number of the instrument module to query for LUN Component Count.
This is the AXIe physical slot number.

LUNcount The number of LUNs on the instrument module in the designated slot. A count of
0 shall indicate an empty slot.

Return Value

If the operation completes successfully, the return value is kPXISA_Success. If the driver has not been

properly initialized (for instance because the client failed to call PXISA_SystemModule_GetCount),

kPXISA_Error is returned.

If the ShMC is unable to communicate with the instrument module identified (for instance, if the slot is

empty), kPXISA_Warning is returned, and the count is set to zero.

6.2.3 GetComponentCount

Gets the number of components provided by a given LUN on the module in the specified slot of the specified

chassis. GetComponentCount is permitted to cache information associated with the chassis, slot, and LUN to

optimize GetFieldCount; however it is required to clear any cached information when it is called.

tPXISA_Status AXIe_GetComponentCount(

 __in tPXISA_Integer chassisNumber,

 __in tPXISA_Integer slotNumber,

 __in tPXISA_Integer LUNIndex,

 __out tPXISA_String componentCount

);

Parameters

chassisNumber The chassis number containing the instrument module, as returned using the

PXI-6 PXISA_SystemModule_GetCount function.

slotNumber The physical slot number of the instrument module to query.

LUNIndex The zero-based index of the LUN on the instrument module.

componentCount The number of components associated with this FRU.

Return Value

If the operation completes successfully, the return value is kPXISA_Success. If the driver has not been

properly initialized (for instance because the client failed to call PXISA_SystemModule_GetCount), an error is

returned.

AXIe-2: Base Software Specification

www.axiestandard.org 30 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

If the ShMC is unable to communicate with the instrument module identified (for instance, if the slot is

empty), an error is returned.

 If the instrument module does not return a value for the queried field, an error is returned.

6.2.4 GetFieldCount

Gets the number of fields and component name of a given component of the LUN on the module in the specified

slot of the specified chassis. GetFieldCount is permitted to cache information associated with the chassis, slot,

LUN, and component to optimize GetFieldInfo; however it is required to clear any cached information when it is

called.

tPXISA_Status AXIe_GetFieldCount(

 __in tPXISA_Integer chassisNumber,

 __in tPXISA_Integer slotNumber,

 __in tPXISA_Integer LUNIndex,

 __in tPXISA_Integer componentIndex,

 __out tPXISA_String componentName,

 __out tPXISA_Integer fieldCount

);

Parameters

chassisNumber The chassis number containing the instrument module, as returned using the

PXI-6 PXISA_SystemModule_GetCount function.

slotNumber The physical slot number of the instrument module to query.

LUNIndex The zero-based index of the LUN on the instrument module.

componentIndex The zero-based index of the component of the LUN.

componentName The name of the component identified by chassisNumber, slotNumber, LUNIndex,
and componentIndex

fieldCount The number of fields associated with this component

Return Value

If the operation completes successfully, the return value is kPXISA_Success. If the driver has not been

properly initialized (for instance because the client failed to call PXISA_SystemModule_GetCount), an error is

returned.

If the ShMC is unable to communicate with the instrument module identified (for instance, if the slot is

empty), an error is returned.

 If the instrument module does not return a value for the queried field, an error is returned.

6.2.5 GetFieldInfo

Get the field information for the component designated by the chassis number, slot number, LUN, FRU and

component index. This may only be called after calling GetFieldCount for the chassis and slot being queried. This

allows information to be gathered by GetFieldCount and cached for calls to this function.

tPXISA_Status AXIe_GetFieldInfo(

 __in tPXISA_Integer chassisNumber,

 __in tPXISA_Integer slotNumber,

 __in tPXISA_Integer LUNIndex,

 __in tPXISA_Integer componentIndex,

 __in tPXISA_Integer fieldIndex,

AXIe-2: Base Software Specification

www.axiestandard.org 31 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

 __out tPXISA_String fieldName,

 __out tPXISA_String fieldValue

);

Parameters

chassisNumber The chassis number containing the instrument module, as returned using the

PXI-6 PXISA_SystemModule_GetCount function.

slotNumber The physical slot number of the system to query

LUNIndex The zero-based index of the LUN on the instrument module.

componentIndex The zero-based index of the component on the FRU.

fieldIndex The zero-based index of the field of the FRU on the instrument module.

fieldName The name of the queried FRU field

fieldValue The value of the queried FRU field

Return Value

If the operation completes successfully, the return value is kPXISA_Success. If the driver has not been

properly initialized (for instance because the client failed to call PXISA_SystemModule_GetCount), an error is

returned.

If the ShMC is unable to communicate with the instrument module identified (for instance, if the slot is

empty), an error is returned.

 If the instrument module does not return a value for the queried field, an error is returned.

6.2.6 GetLinkOrigins

Gets the origin of the four links provided to a given slot. That is, the system module link that provides the

connection for each peripheral module link.

The response parameters indicate which of the system module channels are associated with each link.

The origin shall be reported as -1 for any link that is not active.

tPXISA_Status AXIe_GetLinkOrigins(

 __in tPXISA_Integer chassisNumber,

 __in tPXISA_Integer slotNumber,

 __out tPXISA_Integer * originOfLink1,

 __out tPXISA_Integer * originOfLink2,

 __out tPXISA_Integer* originOfLink3,

 __out tPXISA_Integer* originOfLink4

);

Parameters

chassisNumber The chassis number containing the instrument module, as returned using the

PXI-6 PXISA_SystemModule_GetCount function.

slotNumber The physical slot number of the instrument module to query.

originOfLink1 The system module channel associated with Link 1.

originOfLink2 The system module channel associated with Link 2.

originOfLink3 The system module channel associated with Link 3.

originOfLink4 The system module channel associated with Link 4.

AXIe-2: Base Software Specification

www.axiestandard.org 32 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

Return Value

If the operation completes successfully, the return value is kPXISA_Success. If the driver has not been

properly initialized (for instance because the client failed to call PXISA_SystemModule_GetCount), an error is

returned.

6.2.7 GetLinkWidths

Gets the of number of lanes in each of the four links available to a given slot.

Note that system-module-specific mechanisms are used to configure the fabric that the system module provides.

This API queries the currently active configuration.

The response parameters that return the number of lanes in the link use the designations specified in PICMG

EXP.0 specification. That is:

0h—Not routed

1h—x1 2.5 GT/s PCI Express Signaling

2h—x4 2.5 GT/s PCI Express Signaling

3h—x8 2.5 GT/s PCI Express Signaling

4h—x16 2.5 GT/s PCI Express Signaling

5h—x1 5.0 GT/s PCI Express Signaling

6h—x4 5.0 GT/s PCI Express Signaling

7h—x8 5.0 GT/s PCI Express Signaling

8h—x16 5.0 GT/s PCI Express Signaling

9h—x1 8.0 GT/sc PCI Express Signaling

Ah—x4 8.0 GT/s PCI Express Signaling

Bh—x8 8.0 GT/s PCI Express Signaling

Ch—x16 8.0 GT/s PCI Express Signaling

Dh-Maximum integer — Reserved

Minimum integer - -1 — Reserved

tPXISA_Status AXIe_GetLinkWidths(

 __in tPXISA_Integer chassisNumber,

 __in tPXISA_Integer slotNumber,

 __out tPXISA_Integer * lanesInLink1,

 __out tPXISA_Integer * lanesInLink2,

 __out tPXISA_Integer * lanesInLink3,

 __out tPXISA_Integer * lanesInLink4

);

Parameters

chassisNumber The chassis number containing the instrument module, as returned using the
PXI-6 PXISA_SystemModule_GetCount function.

slotNumber The physical slot number of the instrument module to query.

lanesInLink1 The number of PCI Express lanes configured for Link 1.

lanesInLink2 The number of PCI Express lanes configured for Link 2.

lanesInLink3 The number of PCI Express lanes configured for Link 3.

lanesInLink4 The number of PCI Express lanes configured for Link 4.

Return Value

If the operation completes successfully, the return value is kPXISA_Success. If the driver has not been

properly initialized (for instance because the client failed to call PXISA_SystemModule_GetCount), an error is

returned.

AXIe-2: Base Software Specification

www.axiestandard.org 33 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

6.2.8 Data types

All data types used in this API are defined by PXI-6.

Note that all strings are allocated by the client.

AXIe-2: Base Software Specification

www.axiestandard.org 34 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

A. Summary of the PXI Software Architecture

The AXIe software architecture relies heavily on the PXI software requirements. This appendix details the PXI

Software Architecture.

The purpose of the PXI resource manager is to create a manifest of all of the system modules, chassis, and

peripheral modules on the system. This manifest contains the type of modules discovered and the addressing

information necessary to communicate with them. Most importantly, the manifest provides the physical location

of the modules, this is necessary for client applications to distinguish between identical hardware modules. The

manifest is written to the Windows root directory in two pieces, one for the parallel PXI-1 devices, called

VISA

Driver

AXIe Module
Driver

VISA PXI Plug-in

System console
application

PXI
System Module
Driver for AXIe

PXI Resource
Manager

PXI
System

Description

PXI
Peripheral

Module Driver

PXI
Chassis Driver

Fake
EPROM

PXI Chassis
Trigger

 Configuration

REGISTRY
PXI Services

Tree

IVI CONFIG
STORE
Installed
Drivers

VISA
BACKPLANE

Session (AXIe)

Windows Device Manager

Win plug&play
Configuration

INF
FileKernel Driver

0..n
0..n 0..n

0..n

PXI Singleton
Trigger

Reservation

0..n

AXIe Singleton
Trigger

Reservation

Chassis
Description

File

REGISTRY
PXI Plug-in

Map

Ident
TrigCon

0..n

Peripheral
Description

File

0..n

Figure 4 Basic PXI Software Architecture

AXIe-2: Base Software Specification

www.axiestandard.org 35 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

PXISYS.INI and one for the PXI Express devices, including AXIe, called PXIESYS.INI. Using this information

an IO library, such as VISA, is able to conduct IO to module by specifying its physical location.

The PXI software specifications define the software provided with PXI hardware that is necessary for the resource

manager to work with an arbitrary vendor’s hardware. The necessary software is made up of drivers and static

description files provided with various hardware components. These components discover and describe the

corresponding hardware components. The resource manager uses these drivers and description files whenever the

system is enumerated.

A.1 Overview of PXI System Enumeration

PXI system enumeration is the mechanism where a manifest of the currently connected PXI modules is

constructed. The enumeration process creates a file with an entry for every PXI module connected to the system

including its physical location (chassis designation and slot number), and the information needed to conduct IO

with it. Per the PXI specifications, the PXI system enumeration is done by the resource manager. PXI-6 specifies

the details of how this is done.

The PXI resource manager and the surrounding architecture are illustrated in Figure 4, Basic PXI Software

Architecture.

To enumerate PXI Express, including AXIe resources, the resource manager uses system module drivers and

peripheral module drivers to gather the dynamic information (such as the bus number assigned to a device by the

operating system) and the chassis description file for static information.

PXI requires that each system module and peripheral module installed in the system have corresponding software

installed on the controlller. As part of the software install, the peripheral and system modules create a list in the

registry of the hardware that may be installed on the system. The list includes the vendor name and model name of

the hardware and a PXISA specified driver.

During system enumeration the resource manager calls the driver for each piece of hardware that is potentially

installed on the system. Each driver reports to the resource manager how many instances of the hardware is

present along with addressing information and the physical location of instrument modules.

Using this information, the resource manager builds a manifest that includes:

• All the PXI Express modules, chassis, and system modules installed on the system

• The chassis that each module is installed

• The geographical location of modules within the chasssis (that is, the slot number)

• The system module that accesses them

• Addressing information for each module

• Static information about the chassis such as the star trigger configuration

A.2 System enumeration by the Resource Manager

The algorithm followed by the resource manager is in the PXI-6 specification (sect 3.5.1). Software drivers are

defined for the system modules and peripheral modules. These must be provided by all PXI and AXIe hardware

providers. In addition, PXI specifies a chassis driver, however, for PXI Express devices, static description files

provide all of the necessary information. Therefore chassis that are exclusively PXI Express, such as AXIe, may

omit the chassis driver.

The resource manager calls each system module driver installed on the system.3 This provides a list of chassis, and

the range of PCI bus numbers contained in each chassis. The resource manager then calls each of the peripheral

3 Although not explicitly tagged as rules in the referenced PXI standard, the code files listed in the appendixes define

some values that are critical for interoperability.

AXIe-2: Base Software Specification

www.axiestandard.org 36 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

module drivers installed on the system. This provides a list of all of the peripherals installed along with their PCI

bus number and slot number (that is, the geographical address).

The resource manager combines this information to create the system manifest containing the list of chassis, the

modules installed on each, the slot number of each, and the information necessary to address each device.

A.3 The PXI Services Tree

Figure 5 Typical PXI services tree showing the NI PXIe-1073 system module

The PXI services tree is a registry structure that contains a list of all installed hardware and the system module

drivers, chassis drivers, and peripheral module drivers that support it. There are keys for each type of driver, and

under each key is a list of vendor names, and under each vendor name is a list of model names which contains the

references to the PXI defined driver DLL’s. Figure 5, Typical PXI services tree showing the , illustrates a typical

system.

Note that each driver is called with the vendor name key and the model name key under which the driver is located

in the registry. For instance, the illustrated system driver will be passed “National Instruments” as the vendor

name, and “NI PXIe-1073” as the model. By providing this information to the driver, the same driver can be used

to support equipment from different vendors and of different models.

A.4 The PXI System Module driver

As discussed above, the PXI System Module driver is used by the resource manager to build a list of the system

modules on the system along with the modules plugged into it. As such, most of the work of enumerating the

system is done by this driver.

Table 4, the PXI System Module API and its use, describes the API and its usage for AXIe.

Table 4 the PXI System Module API and its use

Status PXISA_SystemModule_GetCount(String vendor, String model, Integer * count)

vendor: Vendor name to match.

model: Model name to match.

count: Returns Number of System Modules found by the driver.

The resource manager traverses the PXI services tree in the registry and calls each installed system module

driver as the first step to building the list of resources. The system module drivers are used by first calling

AXIe-2: Base Software Specification

www.axiestandard.org 37 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

GetCount to determine the number of installed system modules, then the GetName and GetInformation

API’s are used to get additional information about each discovered system modules.

The resource manager passes GetCount the vendor name key and model name key that are currently being

enumerated. By including these values, the same peripheral driver can be used for different system modules.

Typically a PXI implementation of GetCount will call the device manager to locate the system modules that

the operating system discovered and configured. For instance, using the Windows Driver Development kit

device installation API’s such as SetupDiEnumDeviceInfo(). An AXIe implementation will need to use an

approach specific to the system module to detect and enumerate its system modules.

Note that as the PXI resource manager is enumerating system modules supported by this system module

driver. It begins by calling this function, GetCount, and then calls the GetName and GetInformation

functions for all values of the index starting at one to the count. Therefore, a logical implementation is to

capture and cache all of the necessary information when the GetCount function is called and return the name

and other information from that cache on subsequent calls.

PXI-6 requires that any cached information is cleared when GetCount is called.

Status PXISA_SystemModule_GetName(String vendor, String model, Integer index,

String * name, String * addressInfo)

vendor: Vendor name to match.

model: Model name to match.

index: Index of a System Module. This index is 1-based.

name: Unique name of a System Module.

addressInfo: Additional addressing information for the module

As with GetCount, GetName is passed the vendor and model keys that were associated with this driver in the

registry. GetName is also passed an index from 1 to the count returned by GetCount to get the name and

address for each discovered system module.

GetName provides identifying information for this system module. Note that the name could reasonably be

a constant name followed by an integer designating the instance of the system module.

For PXI, addressInfo is a string that contains any necessary address information required by the

SMBusOperation function in this driver. That is, this addressInfo string will be passed to any subsequent

calls to SMBusOperation.

Although AXIe devices must comply with this requirement, AXIe RULE 5.10:further requires that this same

address string may be used to initialize the instrument driver to communicate with this instance of a system

module, or with the connected chassis.

For AXIe the VISA address of the system module is a VISA LAN address of the form:
TCPIP0::host address::port::SOCKET

For instance:
TCPIP0::192.168.1.13::5025::SOCKET

TCPIP0::MyAXIeChassis::5025::SOCKET

Note that in both examples, port 5025 is shown. In the first example, the numeric IP address and port are

explicit, and in the second example a hostname is used for the IP address.The PXI Resource Manager will

record this address string in the system description file for subsequent use by the client.

For an AXIe embedded system module may just be this system module address. For system modules that

are not embedded, an additional address for the shelf is included with a ‘+’ separator between the two. Thus

the response is <chassis address>+<system module address>. For instance:

AXIe-2: Base Software Specification

www.axiestandard.org 38 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

6.2.8.1.1.1.1.1 TCPIP0::192.168.1.13::5024::SOCKET+TCPIP0::192.168.1.14::
5024::SOCKET

Status PXISA_SystemModule_GetInformation(String name, String addressInfo,

Integer field, Integer * value);

name: Unique name of a System Module.

addressInfo: Additional addressing information for the System Module.

field: Selector for which information field is requested.

value: Value of the information field.

As with GetCount, GetInformation is passed the vendor and model keys that were associated with this driver

in the registry. GetInformation interrogates the system module driver for the link configuration. This

includes:

- The number of lanes in each link

- The bus number and subordinate bus numbers of each PCI link (note that the PXI system module

connectors support a maximum of four links).

The information being queried is specified with the field parameter and is specified in PXI-6, sect 3.3.1. The

response is the integer value.

For PXI, the resource manager uses this API to determine how many PCIe links exist to this system module,

and the bus address range supported by each link (that is, the link bus number and the subordinate bus

number). When the resource manager subsequently invokes the PXI Peripheral Drivers, it will determine

which link (and therefore which chassis) each peripheral is located in.

Since the AXIe architecture provides a star PCIe connection from the system module to the instrument slots,

each slot has its own link. In order for AXIe system modules to respond to this PXI query, AXIe system

module drivers:

- Contrive values by reporting a number of links that is valid for PXI. Specifically, two are

reported.

- Associating each actual AXIe device bus number with the fictitous PXI links and report

appropriate subordinate bus numberes (for instance, the first link could report the first device and

second link could report a bus number and subordinate bus number that spans all the remaining

devices).

It is important to realize that those PCIe bus numbers, although valid for device communication, are not

necessarily associated with a PCIe link through a single physical PCIe switch. For instance, in reality, the

link implemented on the system module may use a single PCIe switch to reach all of the AXIe slots.

AXIe RULE 5.12: describes how AXIe devices respond to this query.

Status PXISA_SystemModule_GetChassisEeprom(String name, String addressInfo,

Buffer * chassisEeprom);

name: Unique name of a System Module.

addressInfo: Additional addressing information for the System Module.

chassisEeprom: Contents of the Chassis EEPROM. This buffer must be 256 bytes

This returns the Compact PCI specified EEPROM contents.

AXIe-2: Base Software Specification

www.axiestandard.org 39 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

The format of the returned data is defined by the Compact PCI standard. It is used by the PXI resource

manager to determine the topology of the parallel PCI devices. This resource manager uses this to determine

the slot number of PXI-1 devices.

The EEPROM is also used to identify the chassis controlled by this system module driver. Specifically, the

EEPROM indicates the serial number, vendor and model of the chassis. The resource manager uses these

values to locate the chassis INI file in the registry and get additional chassis information such as the

configuration of triggers within the chassis.

AXIe RULE 5.12: describes how AXIe devices respond to this query.

Status PXISA_SystemModule_SMBusOperation(String name, String addressInfo,

Integer protocol, Integer address, Integer command, Integer packetErrorCode,

Integer writeBufferCount, Buffer writeBuffer, Integer * readBufferCount, Buffer

* readBuffer);

name: Unique name of a System Module.

addressInfo: Additional addressing information for the System Module.

protocol: Protocol used for the SMBus operation

address: Address Byte sent to the device.
command: Command byte to send to the device.
packetErrorCode: Flag to specify whether to include the Packet Error Code. The value of this field should

be zero (0) when the PEC should not be included, and one (1) when the PEC should be included.
writeBufferCount: Number of bytes to be written for Write Block commands.
writeBuffer: Data content of the operation.
readBufferCount: Number of bytes received for Read Block commands.
readBuffer: Data content received by the operation. This buffer must be 32 bytes.

For PXI Chassis this function is used to initiate arbitrary SMBus operations.

In general this is not used by the resource manager, however the function is available for applications that

need to access the SMBus.

Since the SMBus is not supported with AXIe, this should return a warning and take no action for AXIe.

It should not return an error because errors may cause the PXI resource manager to abort.

A.5 The PXI Express Peripheral Module driver.

All PXI Express peripheral modules (that is, instrument modules) are required to provide a PXI Express peripheral

driver. The PXI Express peripheral module driver is responsible for:

- Enumerating all of the peripheral modules of a given model from a given vendor

- Providing the PCI bus number of each enumerated device

- Providing the slot number of each enumerated device

- Providing the maximum link width and negotiated link width of each enumerated device

The resource manager will correlate this information with the information returned by the system drivers to

determine which chassis and system controller the module resides in.

The implementation of the PXI Express Peripheral Module driver uses the OS device manager to enumerate and

provide PCI bus numbers of all devices that have been associated with a given kernel driver and PCI device ID.

Given this bus number, the resource manager is able to look at the bus number and subordinate bus number of each

link in each chassis and determine which chassis this peripheral module is in.

AXIe-2: Base Software Specification

www.axiestandard.org 40 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

Status PXISA_PeripheralModule_GetCount(String vendor, String model, Integer *

count)

vendor: Vendor name to match.

model: Model name to match.

pmCount: Number of Peripheral Modules found by the driver, matching the criteria of the other

parameters

This is the first call issued by the resource manager when using a peripheral module driver. As with the

system module driver, GetCount is used to determine the number of modules in the system from this

vendor, and of this model.

As with the PXI System Module driver, this will typically utilize the Windows Driver Development kit

device installation API’s.

The implementation will typically specify the GUID associated with a given device driver and build a

list of peripherals of the given vendor and model.

Note that as the PXI resource manager is enumerating the peripheral modules supported by this

peripheral module driver, it begins by calling this function, and then calls the GetName and

GetInformation functions for all values of the index from one to the count. Therefore, a logical

implementation is to capture and cache all of the necessary information when the GetCount function is

called and return the name, and other information from that cache on subsequent calls. The PXI specs

require that the cache is cleared when this function is called.

Status PXISA_PeripheralModule_GetName(String vendor, String model, Integer

index, String * name, String * addressInfo)

vendor: Vendor name to match.

model: Model name to match.

index: Index of a Peripheral Module. This index is 1-based.

name: Unique name of a Peripheral Module.

addressInfo: Additional addressing information for the module.

The resource manager uses this function to read back the module name and module addressInfo from

each module reported by the GetCount function.

The returned name identifies this device (for instance “myDevice2”). The returned addressInfo is passed

to the GetInformation function.

This is NOT necessarily the same string the resource manager writes to these values in the system

description file where this module is identified.

Status PXISA_PeripheralModule_GetInformation(String name, String addressInfo,

Integer field, Integer * value);

name: Unique name of a Peripheral Module.

addressInfo: Additional addressing information for the Peripheral Module.

field: Selector for which information field is requested.

value: Value of the information field.

AXIe-2: Base Software Specification

www.axiestandard.org 41 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

The resource manager uses this function to determine additional PCI information and geographic address

of this module. Specifically, the slot number, maximum link width, PCI Bus Number, and negotiated

link width are read back from the driver.

The resource manager passes this function the name and address string returned by GetName.

The field parameter designates the specific value that the resource manager is querying.

Note that AXIe devices return the logical address as the slot number.

A.6 Implementation of the Peripheral Module Driver

Much of the information required for AXIe enumeration is available at compile time. For instance, for a given

endpoints the, PCI vendor-IDs, product IDs, product slot count, and end-point offset within the module is known.

Consider:

• The module provider knows the module's model name for each endpoint (for example, KtM1234B)

• The module provider knows the occupied slot count and slot number offset (for example, if it is the

middle slot of a 3-slot instrument). Note that this does prevent the use of identical software when

installing a module stand-alone and embedding it into another device. However, that requirement is a

direct fall-out of the specification, because otherwise, the module would incorrectly report the occupied

slot count.

• The module provider knows the the endpoint resides in a multi-endpoint module, and if so, if it is the

primary endpoint or a secondary endpoint (or beyond).

A single peripheral module drivers can support multiple modules. To do this, the peripheral module driver:

• Calls the operating system (in this case of Windows, this is the device manager) for information about the

PCIe configuration

• Reads data provided when the module is installed that allows the peripheral module driver to associate the

discovered endpoints with physical modules.

To support multi-link/multi-endpoint/multi-slot modules, the peripheral module driver reads additional

configuration information provided when the driver software is installed.

 Peripheral Module Driver Behavior for Multi-Slot Modules

For multi-slot modules, the peripheral module driver reports back the appropriate slot number offset and occupied

slot count based its communication with the operating system PCI system and knowledge of the module from the

module installation data.

 Peripheral Module Driver Algorithm for Multi-Endpoint Modules

In order for the peripheral module driver to report back a full address_info string for a multi-endpoint module, it

must:

• Enumerate all the endpoints for this module type, and

• Properly correlate them into individual modules (reporting the multiple addresses in a comma separated

string)

To do this, the peripheral module driver can:

AXIe-2: Base Software Specification

www.axiestandard.org 42 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

• Identify all installed drivers based on the driver GUID (note that an instance of a driver will be available

for each endpoint.

• Reads back the slot information from each endpoint (by using the kernel driver configured for the device)

Next, the peripheral module driver needs to determine which endpoints are in the same module. For example, there

could be several instances of a given multi-endpoint module. They could be plugged into different chassis (perhaps

in the same slot) or the same chassis. If they were all plugged into a single chassis, the slot number could be used

to associate them together. However, that is not adequate for multi-chassis systems. Therefore, the peripheral

module driver needs to read PCIe topology information back from the operating system to determine which end-

points are in the same module.

 Peripheral Module Driver Algorithm for Multi-Link Modules

The peripheral module driver does not need any special handling for multi-link modules. Each slot enumerates

conventionally, reporting the registry/INF data for the slot number offset and occupied slot count. It is the resource

manager's responsibility to recognize these endpoints as being part of a multi-link module based on the

geographical location.

A.7 The Chassis Description File

Figure 6 The registry entries made by the resource manager that specify where the chassis and module

description files should be installed

The chassis description file is specified by PXI-6, section 2.3. It contains static information about the chassis that

is not available from the Compact PCI EEPROM (which is available to the resource manager via the system

module driver).

When the resource manager is installed, it specifies where the chassis description files should be installed. It does

this by writing the directory value ChassisDescriptionFilePath to the registry key:

 Key: HKEY_LOCAL_MACHINE\SOFTWARE\PXISA\CurrentVersion

 Value: ChassisDescriptionFilePath

Figure 6 shows an example. Note that the registry key is located in the 32-bit registry hive on both 32 and 64-bit

operating systems.

PXI-6 specifies that a chassis description file shall be provided by the chassis manufacturer and installed to the

appropriate directory. PXI-6 specifies that the name of the installed description file shall be

chassis_vendorDefinedText.ini. Since these files are all installed to the same directory, it is recommended to

include the vendor name in this string to guarantee there are no conflicts with other vendors’ names. Common

practice is to use the vendor name followed by the chassis model name for the file name root.

AXIe-2: Base Software Specification

www.axiestandard.org 43 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

This appendix does not fully describe the syntax of the chassis description file. The PXI specification is quite clear

on that and has helpful examples. The key information included in the chassis description file is:

Chassis Description Contains general information about the chassis (the model name and vendor name).

This also includes an indication of the number of instances of subsequent descriptions.

For instance, the number of slots, and the number of trigger busses. This provides

some redundancy in the file that helps detect syntax errors (for instance, if 8 slots are

declared but only 7 are described).

Trigger Bus As with AXIe, PXI defines several trigger lines. Although disallowed by AXIe, PXI

buses may connect a group of slots together into a segment. The chassis then provides

buffering between segments that must be configured as to the direction of signal flow.

This descriptor specifies the number of segments, and which slot is in each segment.

StarSystemTimingSet PXI Express defines additional differential star triggers. These are described by this

descriptor and not used with AXIe.

StarTrigger This descriptor described which slots are connected to each PXI timing set (which in

turn are related to a timing slot by the StarSystemTimingSet descriptor).

Slot The slot descriptor describes an individual slot. The only tags defined by PXI are the

LocalBusLeft and LocalBusRight tags. For PXI, this specifies which slot is connected

to the left or right local bus. For AXIe, the logical address is used.

PXI1BusSegment This descriptor provides information about the PXI1 (parallel) connections. There is a

single occurrence of this descriptor for each parallel PCI bus in the chassis. The

descriptor describes the PCI IDSEL number of each slot. Note that this is important

for both conventional PXI1 slots and for slots that are hybrid.

A.8 Details of the PXI Chassis driver

PXI-6 also defines a chassis driver. This is not necessary for a pure PCIe system like AXIe.

The PXI chassis driver provides dynamic information about each chassis that is used along with static information

provided in a chassis INI file. For parallel PXI, the chassis INI file identifies PCI IDSEL line associated with each

slot. The chassis driver completes the information by providing the resource manager with the bus number of each

PCI segment in the chassis.

The chassis driver follows a similar discovery algorithm as the system module driver, providing the resource

manager with PCI bus number of the root bus in each chassis. The resource manager uses this along with

information in the chassis .INI file and information returned by the peripheral driver to enumerate all PXI-1

peripherals and determine their slot number and bus number. This is very similar to the role of the system module

driver since enumerating the system modules basically provides a list of the connected chassis as well.

The information provided by the chassis driver differs from what is provided by the system module driver in that

the chassis driver provides a list of parallel PCI root buses.

A.9 Peripheral Module Description Files

PXI-4 specifies a module description file. This is an optional file that is not required or recommended for AXIe

devices. The resource manager inserts the contents of the periperhal module description file in the slot descriptor

of any slots containing the module type described by the module description file.

A.10 VISA PXI Plug-in Specification

The IVI 6.3 defines a standard VISA plug-in. This is a DLL that is dynamically loaded by VISA to do IO to PXI

devices. Although not required by PXI or AXIe, this is a useful module to provide because it allows third party

AXIe-2: Base Software Specification

www.axiestandard.org 44 Copyright © 2011-2018 AXIe Consortium. All rights reserved.

VISA libraries to control arbitrary PXI modules. For some VISA vendors, this is required for the module to appear

in their system console applications.

